Φορτώνει, μη φορτώνεις...

ΕΠΙΣΤΡΟΦΗ

Υλοποίηση μέσω γλώσσας Wolfram στο WLJS Notebook .

Γραφήματα 2D

Επειδή το WLJS δεν υποστηρίζει όλα τα `PlotTheme` του Mathematica, υπάρχει η λύση του `MMAView` για όσους δουλεύουν στο WLJS. Συγκεκριμένα, ενώ επί παραδείγματι το παρακάτω δεν εμφάνιζε κάτι: `Plot[f[x], {x, -8, 8}, PlotTheme -> "Marketing"]` γράφοντας τελικά: `Plot[f[x], {x, -8, 8}, PlotTheme -> "Marketing"]//MMAView` εμφανίζεται το γράφημα όπως ακριβώς το παράγει το Mathematica. Για να μην προκύψουν παρανοήσεις σχετικά με τις εντολές της γλώσσας Wolfram, θα εφαρμόσουμε καθολικά το `MMAView`. Unprotect[ToString]; ToString[expr: _[__], StandardForm] := With[{view = MMAView[expr]}, ExportString[ StringReplace[ (view // ToBoxes) /. {RowBox->RowBoxFlatten} // ToString , {"\[NoBreak]"->""}] , "String"]]; Protect[ToString];

Απλές περιπτώσεις

Clear["Global`*"] f[x_] := x^2 Plot[f[x], {x, -8, 8}] DiscretePlot[f[x], {x, -8, 8}]

Παρουσίαση

Γραμμή

Clear["Global`*"] f[x_] := x^2 Plot[f[x], {x, -8, 8}] Plot[f[x], {x, -8, 8}, PlotStyle -> Dashed] Plot[f[x], {x, -8, 8}, PlotStyle -> Thick]

Υπόβαθρο

Plot[f[x], {x, -8, 8}, Background -> White] Plot[f[x], {x, -8, 8}, Background -> Lighter[Gray, 0.5]] Plot[f[x], {x, -8, 8}, Background -> Lighter[Gray, 1]] Plot[f[x], {x, -8, 8}, Background -> LightBlue]

Πλαίσιο

Plot[f[x], {x, -8, 8}, PlotTheme -> "Monochrome"] Plot[f[x], {x, -8, 8}, PlotTheme -> "Scientific"] Plot[f[x], {x, -8, 8}, PlotTheme -> "Classic"] Plot[f[x], {x, -8, 8}, PlotTheme -> "Detailed"] Plot[f[x], {x, -8, 8}, PlotTheme -> "Marketing"] Plot[f[x], {x, -8, 8}, PlotTheme -> "Business"]

Ετικέτες

Clear["Global`*"] f[x_] := a^x numOfa = 10; aMin = 1.05; aMax = 4.1; (*Λίστα συναρτήσεων*) fList1 = Evaluate[Table[f[x], {a, aMin, aMax, (aMax - aMin)/numOfa}]]; (*Λίστα χρωμάτων*) thermList=Table[ColorData["TemperatureMap"][0.5` +n],{n,0,0.5,0.5/numOfa}]; p1 = Plot[fList1, {x, -6, 6}, AspectRatio -> 7/12, PlotStyle -> thermList, PlotLegends -> Placed[fList1, Below], PlotRange -> {-1, 6}]

Άλλες ενδείξεις στους άξονες

Clear["Global`*"] y0 = 0.5; y1 = 3.5; S = 2; k = 1.6; d = 1; colorF = Blue; tc = Log[Abs[S - y0]/y0]/(k S); lgcL[t_] := y0 S/(y0 + (S - y0) Exp[-k S t]) lgcG[t_] := y1 S/(y1 + (S - y1) Exp[-k S t]) Plot[{lgcL[t], lgcG[t]}, {t, tc - 3, 4}, Background -> LightGray, AxesLabel -> {"t", "y"}, Ticks -> {None, {{S, "S"}}}] Clear["Global`*"] f[x_] := Sin[ x] Plot[f[x], {x, -Pi - 0.5, 3 Pi + 0.5}, AspectRatio -> 3/(4 Pi + 1), PlotRange -> {-1.5, 1.5}, PlotLabel -> "f(x)=ημ(x), \nΤ=2π, min=-1, max=1", Ticks -> {Range[-Pi, 3 Pi, Pi/2], Automatic}, ImageSize -> Large] Clear["Global`*"] center = Row[{#, Invisible[#]}, "\[NegativeThickSpace]"] &; d = Range[10]; xticks = Table[{n, center@Rotate["The y value is " <> ToString[n], 45 Degree]}, {n, d}]; ListPlot[d, Frame -> True, FrameTicks -> {{Automatic, None}, {xticks, None}}] xticks2 = Table[{n^2, "x=" <> ToString[n] <> "^2"}, {n, 5}]; f[x_] := x^2 Plot[f[x], {x, -1, 26}, Ticks -> {xticks2, Automatic}]

Κατακόρυφες και οριζόντιες γραμμές

Clear["Global`*"] f[x_] := Exp[x]; Plot[f[x], {x, -1, 2}, GridLines -> {{Pi/2, 0.5}, {2}}] Plot[f[x], {x, -1, 2}, GridLines -> {{{Pi/2, Red}, {0.5, Thick}}, {{2, Blue}}}]

Εύρος

Clear["Global`*"] a = 0.01; f[x_] := 1/(x^2 + a) + Sqrt[1 - x^2] Plot[f[x], {x, -2, 2}] Plot[f[x], {x, -2, 2}, PlotRange -> All] Plot[f[x], {x, -2, 2}, PlotRange -> Full] Plot[f[x], {x, -2, 2}, PlotRange -> {{0, 1}, {0, 10}}]

Μεγεθύνσεις

Clear["Global`*"] (*Θέση κόκκινου ορθογωνίου*) xPos = 15.5; (*Εύρος κόκκινου ορθογωνίου*) range = 0.2; f[x_] := 1/x; xyMinMax = {{xPos - range, xPos + range}, {f[xPos] - range*GoldenRatio^-1, f[xPos] + range*GoldenRatio^-1}}; (*Θέση πορτοκαλί ορθογωνίου*) posFrame = {14, 5}; Plot[f[x], {x, -2, 20}, PlotRange -> {-2, 8}, AspectRatio -> 10/22, Epilog -> {Transparent, EdgeForm[{Thick, Red}], Rectangle[Sequence @@ Transpose[xyMinMax]], Inset[Plot[f[x], {x, xPos - range, xPos + range}, Frame -> True, FrameStyle -> Orange, Axes -> False, PlotRange -> xyMinMax, ImageSize -> 270], posFrame]}, ImageSize -> 700]

Χρωματισμός βάσει ύψους

Clear["Global`*"] f[x_] := x^2 + 20 Cos[x] (*Βλ. επίσης Color Schemes*) Plot[f[x], {x, 0, 10}, PlotStyle -> Thick, ColorFunction -> Function[{x, y}, ColorData["NeonColors"][y]]] Plot[f[x], {x, 0, 10}, PlotStyle -> Thick, ColorFunction -> Function[{x, y}, ColorData["ThermometerColors"][y]]] Plot[f[x], {x, 0, 10}, PlotStyle -> Thick, ColorFunction -> Function[{x, y}, ColorData["SunsetColors"][y]]] Plot[f[x], {x, 0, 10}, PlotStyle -> Thick, ColorFunction -> Function[{x, y}, ColorData["TemperatureMap"][y]]] Plot[f[x], {x, 0, 10}, PlotStyle -> Thick, ColorFunction -> Function[{x, y}, ColorData["AlpineColors"][y]]]

Χρωματισμός βάσει μονοτονίας

Clear["Global`*"] f[x_] := x^2 + 20 Cos[x] colorFunction = ColorData["Rainbow"][0.5 + ArcTan[#/10]/Pi] &@ First@Ratios[First@Differences[#]] &; Plot[f[x], {x, -10, 10}] /. Line[p_] :> ({colorFunction[#], Line[#]} & /@ Partition[p, 2, 1]) accessibleRainbow = Import["https://pastebin.com/raw/8ngJtMtU"]; colorFunction = accessibleRainbow[0.5 + ArcTan[#/10]/Pi] &@ First@Ratios[First@Differences[#]] &; Plot[f[x], {x, -10, 10}] /. Line[p_] :> ({colorFunction[#], Line[#]} & /@ Partition[p, 2, 1]) Clear["Global`*"] f[x_] := x^2 + 20 Cos[x] fPrimeNum[x_] := Evaluate[D[f[x], x]]; (*Find the maximum absolute derivative value for normalization*) maxDerivative = MaxValue[{Abs[fPrimeNum[x]], -10 <= x <= 10}, x]; (*Define a color function based on the magnitude and sign of the \ derivative*) colorFunction[x_] := ColorData["TemperatureMap"][0.5 + 0.5 fPrimeNum[x]/maxDerivative] Plot[f[x], {x, -10, 10}, PlotStyle -> Thick, ColorFunction -> Function[{x, y}, colorFunction[x]], ColorFunctionScaling -> False, PlotPoints -> 200, MaxRecursion -> 4, Exclusions -> None, Background -> Gray] fPrime = D[f[x], x]; (*Compute the symbolic derivative*) (*Convert the symbolic derivative into a numerical function*) fPrimeNum = Function[x, fPrime]; (*Normalizing the derivative to the range[0,1] for use with Hue*) colorFunction[x_] := Hue[(Sign[fPrimeNum[x]] + 1)/3] Plot[f[x], {x, -10, 10}, ColorFunction -> Function[{x, y}, colorFunction[x]], ColorFunctionScaling -> False] cf = Function[x, Blend[{Green, Red}, Rescale[Clip[f'[x], {-50, 50}], {-50, 50}, {0, 1}]]]; Plot[f[x], {x, -10, 10}, ColorFunction -> cf, ColorFunctionScaling -> False]

Για γέμισμα

Clear["Global`*"] f[x_] := -x^2+1 horiz = -3; Plot[f[x], {x, 0, 5}, Filling -> horiz, FillingStyle -> {Red, Blue}] g[x_] := -1 + x + x^2 Plot[{f[x], g[x]}, {x, 0, 3}, Filling -> {1 -> {2}}, FillingStyle -> {Red, Blue}]

Ανοιχτά σημεία (holdot)

Clear["Global`*"] f[x_] := (1 + 2 Exp[1/x])/(1 + Exp[1/x]) Plot[f[x], {x, -3, 3}, ColorFunction -> "TemperatureMap", PlotRange -> {{-2, 2}, {-0.5, 2.5}}, AspectRatio -> 3/4, Epilog -> {PointSize[0.03], Blue, Point[{0, 1}], PointSize[0.02], LightGray, Point[{0, 1}], PointSize[0.03], Red, Point[{0, 2}], PointSize[0.02], LightGray, Point[{0, 2}]}]

Συνάρτηση με παράμετρο

Clear["Global`*"] f[x_] := a* x^2 Table[Plot[a x^2, {x, -8, 8}, PlotLabel -> "a=" <> ToString[a]], {a, -4, 4}] numOfa = 10; aMax = 50; fList = Evaluate[Table[f[x], {a, 0, aMax, aMax/numOfa}]]; grayList = Table[GrayLevel[n], {n, 0, 0.5, 0.5/numOfa}]; Plot[fList, {x, -8, 8}, PlotRange -> All, PlotStyle -> grayList] fListCol = Evaluate[Table[f[x], {a, -aMax, aMax, 2 aMax/numOfa}]]; colList = Table[ColorData["TemperatureMap"][n], {n, 0, 1, 1/numOfa}]; Plot[fListCol, {x, -8, 8}, PlotRange -> All, PlotStyle -> colList] Clear["Global`*"] f[x_] := a^x numOfa = 10; aMin = 1.05; aMax = 4.1; fList1 = Evaluate[Table[f[x], {a, aMin, aMax, (aMax - aMin)/numOfa}]]; thermList = Table[ColorData["TemperatureMap"][0.5 + n], {n, 0, 0.5, 0.5/numOfa}]; Clear["Global`*"],Null,f[x_]:=(*SpB[*)Power[a(*|*),(*|*)x](*]SpB*),Null,numOfa=10;,Null,aMin=0.05`;,Null,aMax=0.9`;,Null,fList1=Evaluate[Table[f[x],{a,aMin,aMax,(*FB[*)((aMax-aMin)(*,*)/(*,*)(numOfa))(*]FB*)}]];,Null,coldList=Table[ColorData["TemperatureMap"][n],{n,0,0.5`,(*FB[*)((0.5`)(*,*)/(*,*)(numOfa))(*]FB*)}];,Null,p2=Plot[fList1,{x,-6,6},AspectRatio -> (*FB[*)((7)(*,*)/(*,*)(12))(*]FB*),PlotStyle -> coldList,PlotLegends -> Placed[fList1,Below],PlotRange -> {-1,6},PlotLabel -> "f(x)=\!\(\*SuperscriptBox[\(α\), \(x\)]\)",ImageSize -> Medium]p1=Plot[fList1,{x,-6,6},AspectRatio -> (*FB[*)((7)(*,*)/(*,*)(12))(*]FB*),PlotStyle -> thermList,PlotLegends -> Placed[fList1,Below],PlotRange -> {-1,6},PlotLabel -> "f(x)=\!\(\*SuperscriptBox[\(α\), \(x\)]\)",ImageSize -> Medium] Clear["Global`*"] f[x_] := a^x numOfa = 10; aMin = 0.05; aMax = 0.9; fList1 = Evaluate[Table[f[x], {a, aMin, aMax, (aMax - aMin)/numOfa}]]; coldList = Table[ColorData["TemperatureMap"][n], {n, 0, 0.5, 0.5/numOfa}]; p2=Plot[fList1,{x,-6,6},AspectRatio -> (*FB[*)((7)(*,*)/(*,*)(12))(*]FB*),PlotStyle -> coldList,PlotLegends -> Placed[fList1,Below],PlotRange -> {-1,6},PlotLabel -> "f(x)=\!\(\*SuperscriptBox[\(α\), \(x\)]\)",ImageSize -> Medium]

Πολλές συναρτήσεις μαζί

Clear["Global`*"] f[x_] := x^2 - x g[x_] := Sin[x] Plot[{f[x], g[x]}, {x, -2, 6}, PlotTheme -> "Monochrome", PlotLegends -> {"Cf", "Cg"}] Plot[{f[x], g[x]}, {x, -2, 6}, PlotLegends -> {"Cf", "Cg"}]

Πολικές συντεταγμένες

Clear["Global`*"] r1[th_] := 1 + 1/10 Sin[10 th] r2[th_] := th + 1/10 Sin[10 th] PolarPlot[{r1[th], r2[th]}, {th, 0, 2 Pi}] PolarPlot[r1[th], {th, 0, 2 Pi}, PlotTheme -> "Business"]

Παραμετρικές καμπύλες $(x(t),y(t))$

Clear["Global`*"] x[t_] := 2 Sin[t] y[t_] := 3 Cos[t] ParametricPlot[{x[t], y[t]}, {t, 0, 2 Pi}] ParametricPlot[{{2 x[t] - 3, 3 y[t] - 2}, {{x[t] - y[t], x[t] + y[t]}}}, {t, 0, 2 Pi}]

Πεπλεγμένες

Clear["Global`*"] f[x_, y_] := x^2 - x y^2 ContourPlot[f[x, y] == 1, {x, -2, 2}, {y, -3, 3}]

Κώστας Κούδας | © 2025